Induced pluripotent stem cells in Parkinson's disease: scientific and clinical challenges
نویسندگان
چکیده
Induced pluripotent stem cells (iPSCs), which greatly circumvent the ethical issue of human embryonic stem cells (ESCs), can be induced to differentiate to dopaminergic (DA) neurons, and hence be used as a human disease model for Parkinson's disease (PD). iPSCs can be also utilised to probe the mechanism, and serve as an 'in vivo' platform for drug screening and for cell-replacement therapies. However, any clinical trial approaches should be extensively supported by validated robust biological evidence (based on previous experience with fetal mesencephalic transplantation), in particular, the production and selection of the 'ideal' neurons (functional units with no oncological risk), together with the careful screening of appropriate candidates (such as genetic carriers), with inbuilt safeguards (safety studies) in the evaluation and monitoring (functional neuroimaging of both DA and non-DA system) of trial subjects. While iPSCs hold great promise for PD, there are still numerous scientific and clinical challenges that need to be surmounted before any clinical application can be safely introduced.
منابع مشابه
Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملInduced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملInduced Pluripotent Stem Cells: Challenges and Opportunities
Regenerative capacity of mammals is limited and can rarely regenerate a specific organ or tissue fully. Due to these limitations, regenerative medicine seeks efficient and safe cell sources for regeneration of damaged tissues and organs or treatment for incurable diseases. Human embryonic stem cells (HESCs) hold two important properties called self renewal and pluripotency. However, the use of ...
متن کاملThe Progress of Induced Pluripotent Stem Cells as Models of Parkinson's Disease
In recent years, induced pluripotent stem cells (iPSCs) were widely used for investigating the mechanisms of Parkinson's disease (PD). Somatic cells from patients with SNCA (α-synuclein), LRRK2 (leucine-rich repeat kinase 2), PINK1 (PTEN induced putative kinase 1), Parkin mutations, and at-risk individuals carrying GBA (β-glucocerebrosidase) mutations have been successfully induced to iPSCs and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 87 شماره
صفحات -
تاریخ انتشار 2016